Reversing Urban Sprawl: A Reclaimability Index Approach for Reviving Downtown Brownfields

A key step to promoting smart growth principles is the reclamation of dilapidated and contaminated urban sites, also known as brownfields. Brownfield redevelopment aids in using existing infrastructure instead of developing green fields, and promotes the creation of walkable neighborhoods that were the paradigm of growth prior to the prevalence of urban sprawl in cities across America. The conversion of brownfields into local business centers would also favor public transportation and revival of local markets. However, brownfield reclamation meets significant obstacles, depending on the local legal, economic and social conditions. The intervention of state and city authorities with financial and policy-based aid is crucial to overcoming those obstacles. However, allocation of (limited) funds should take into consideration smart growth principles to maximize the related benefits. To support the decision making process, the proposed research will analyze the current conditions in the State of Connecticut, understand the obstacles for the successful brownfield reclamation and develop a spatially-based tool that can be used by public planners to prioritize brownfield redevelopment options based on a consideration of overall social benefits relative to costs, including the promotion of smart growth.

Start Date: August 22, 2008
End Date: August 21, 2011

Research Team

Maria Chrysochoou, Ph.D.
Assistant Professor, Civil and Environmental Engineering
mchrysoc@engr.uconn.edu
Ph.D. Stevens Institute of Technology, 2006

Areas of Expertise:
Micro- and nano-scale characterization of complex media
Speciation and remediation of heavy metals
Contaminated site remediation
Stabilization/Solidification of soil and dredged sediments
Recycling and reuse of industrial waste
Geotechnical stabilization of expansive soils and waste

Amvrossios Bagtzoglou, Ph.D.
Professor, Civil and Environmental Engineering
acb@engr.uconn.edu
Ph.D. University of California, Irvine, 1995

Areas of Expertise:
Water resources and hydrology
Geoenvironmental engineering
Numerical analysis
Geostatistical simulation

Kathleen Segerson, Ph.D.
Professor, Economics
Kathleen.Segerson@uconn.edu
Ph.D. Cornell University, 1984

Areas of Expertise:
Natural resource use
Environmental economics

Norman Garrick, Ph.D.
Associate Professor, Civil and Environmental Engineering
garrick@engr.uconn.edu
Ph.D. Purdue University, 1986

Areas of Expertise:
Urban streets and highway design
Social and environmental impact of transportation
Urban transportation systems
Bicyclist and pedestrian facility design